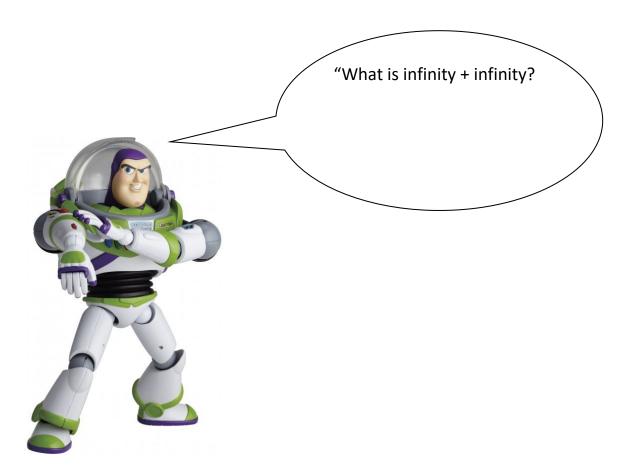


Maths:

GCES to A-level transition


booklet

We empower | We respect | We care

Introduction to A-Level Maths (Bridging Unit) 100pts

SUMMER

Tuxford Academy

Faculty of Mathematics

INTRODUCTION TO A LEVEL MATHS AT TUXFORD ACADEMY

Thank you for considering studying Mathematics in the sixth form at Tuxford Academy. Your Maths A level course, starting September, contains additional content, questioning and structure to previous years. In A2 Mathematics you will sit three exams: Paper 1 – Core/Pure, Paper 2 – Core/Pure/Mechanics and Paper 3 – Core/Pure/Statistics. All exams have an equal weighing and are 2 hours in duration. These exams will take place at the end of the two-year course.

The Mathematics Faculty is committed to ensuring that you make good progress throughout your A2 course. In order that you make the best possible start to the course, we have prepared this booklet.

It is <u>vitally important</u> that you spend some time working through the questions in this booklet over the summer - you will need to have a good knowledge of these topics <u>before</u> you commence your course in September. You should have met all the topics before at GCSE. Work through the introduction to each chapter, making sure that you understand the examples. Then tackle the exercise – not necessarily every question, but enough to ensure you understand the topic thoroughly. The answers are given at the back of the booklet.

We will test you during the second week of the course starting to check how well you know the topics. <u>You</u> <u>will be expected to gain 90% of the marks</u>, so it is important that you have looked at all the booklet before then. If you do not pass this test, you will be given one re-test, <u>failure to pass a second time will mean</u> <u>removal from the course</u>. A mock test is provided at the back of this booklet.

Completion of the entire booklet, plus mock test is 100pts.

From September, students will be expected to prepare themselves with research *prior* to lessons in order for them to access subject content.

We hope that you will use this introduction to give you a good start to you're A level work and that it will help you enjoy and benefit from the course more.

More preparation for the A Level course can be found at:

www.cimt.org.uk/projects/mepres/step-up/index.htm

NB: The Maths faculty highly recommend the Casio fx-991EX ('Classwiz') calculator. Available at around £25, this is a sensible option for A-level Maths. It is not required any more money on graphical calculators than this.

Many thanks and good luck,

Mr M Lee

Head of Mathematics

	CONTENTS		
Chapter 1	Removing brackets	page	3
Chapter 2	Linear equations		5
Chapter 3	Simultaneous equations 9		
Chapter 4	Factors 11		11
Chapter 5	Change the subject of the formula 14		
Chapter 6	Solving quadratic equations 17		
Chapter 7 Indices 19		19	

Chapter 1: REMOVING BRACKETS

To remove a single bracket, we multiply every term in the bracket by the number or the expression on the outside:

Examples

1)

$$3(x + 2y) = 3x + 6y$$

2)
$$-2(2x-3) = (-2)(2x) + (-2)(-3)$$

= $-4x + 6$

To expand two brackets, we must multiply everything in the first bracket by everything in the second bracket. We can do this in a variety of ways, including

- * the smiley face method
- * FOIL (Fronts Outers Inners Lasts)
- * using a grid.

Examples:

1)

(x + 1)(x + 2) = x(x + 2) + 1(x + 2)

or

$$(x+1)(x+2) = x^2 + 2 + 2x + x$$

= $x^2 + 3x + 2$

or

	x	1	$(x+1)(x+2) = x^2 + 2x + x + 2$
x	<i>x</i> ²	x	$= x^2 + 3x + 2$

2) (x-2)(2x+3) = x(2x+3) - 2(2x+3) $= 2x^2 + 3x - 4x - 6$ $= 2x^2 - x - 6$

or
$$(x-2)(2x+3) = 2x^2 - 6 + 3x - 4x = 2x^2 - x - 6$$

or

-			(2)
	x	-2	(2)
2 <i>x</i>	2 <i>x</i> ²	-4 <i>x</i>	
3	3 <i>x</i>	-6	

$$2x+3)(x-2) = 2x^2 + 3x - 4x - 6$$
$$= 2x^2 - x - 6$$

EXERCISE A

- 1. 7(4x + 5)
- 2. -3(5x 7)
- 3. 5*a* 4(3*a* 1)
- 4. 4y + y(2 + 3y)
- 5. -3x (x + 4)
- 6. 5(2x 1) (3x 4)
- 7. (x+2)(x+3)
- 8. (t-5)(t-2)
- 9. (2x + 3y)(3x 4y)
- 10. 4(x 2)(x + 3)
- 11. (2y 1)(2y + 1)
- 12. (3 + 5x)(4 x)

Two Special Cases

Perfect Square:	Difference of two squares:
$(x + a)^2 = (x + a)(x + a) = x^2 + 2ax + a^2$	$(x-a)(x+a) \qquad = x^2 - a^2$
$(2x - 3)^2 = (2x - 3)(2x - 3) = 4x^2 - 12x + 9$	$(x-3)(x+3) = x^2 - 3^2$
	$= x^2 - 9$

EXERCISE B Multiply out

- 1. $(x 1)^2$
- 2. $(3x+5)^2$
- 3. $(7x 2)^2$

- 4. (x+2)(x-2)
- 5. (3x + 1)(3x 1)
- 6. (5y 3)(5y + 3)

Chapter 2: LINEAR EQUATIONS

When solving an equation, you must remember that whatever you do to one side must also be done to the other. You are therefore allowed to

- add the same amount to both side
- subtract the same amount from each side
- multiply the whole of each side by the same amount
- divide the whole of each side by the same amount.

If the equation has unknowns on both sides, you should collect all the letters onto the same side of the equation.

If the equation contains brackets, you should start by expanding the brackets.

A linear equation is an equation that contains numbers and terms in x. A linear equation does not contain any x^2 or x^3 terms.

Example 1 : Solve the equation $64 - 3x = 25$	
Solution : There are various ways to solve this equation. One approximately the solution of t	pproach is as follows:
Step 1: Add $3x$ to both sides (so that the x term is positive):	64 = 3x + 25
Step 2: Subtract 25 from both sides:	39 = 3 <i>x</i>
Step 3: Divide both sides by 3:	13 = <i>x</i>

So the solution is x = 13.

Example 2 : Solve the equation $6x + 7 = 5 - 2x$.	
Solution:	
Step 1: Begin by adding 2x to both sides	8 <i>x</i> + 7 = 5
(to ensure that the x terms are together on the same side)	
Step 2: Subtract 7 from each side:	8 <i>x</i> = -2
Step 3: Divide each side by 8:	x = -¼

Exercise A: Solve the following equations, showing each step in your working:

1) 2x + 5 = 19 2) 5x - 2 = 13 3) 11 - 4x = 5

4)	5 – 7 <i>x</i> = -9	5) $11 + 3x = 8 - 2x$	6) $7x + 2 = 4x - 5$
• /	5 // 5	3) 11 30 20 20	

Example 3 : Solve the equation 2(3 <i>x</i> –	(-2) = 20 - 3(x + 2)
Step 1: Multiply out the brackets:	6x - 4 = 20 - 3x - 6
(taking care of the negative signs)	
Step 2: Simplify the right hand side:	6x - 4 = 14 - 3x
Step 3: Add 3x to each side:	9x - 4 = 14
<u>Step 4</u> : Add 4:	9 <i>x</i> = 18
Step 5: Divide by 9:	<i>x</i> = 2

Exercise B: Solve the following equations.

1) 5(2x-4) = 4 2) 4(2-x) = 3(x-9)

3)
$$8 - (x + 3) = 4$$
 4) $14 - 3(2x + 3) = 2$

EQUATIONS CONTAINING FRACTIONS

When an equation contains a fraction, the first step is usually to multiply through by the denominator of the fraction. This ensures that there are no fractions in the equation.

Example 4: Solve the equation
$$\frac{y}{2} + 5 = 11$$

Solution:

<u>Step 1</u>: Multiply through by 2 (the denominator in the fraction): y + 10 = 22

Step 2: Subtract 10:

y = 12

Example 5: Solve the equation $\frac{1}{3}(2x+1) = 5$ Solution:Step 1: Multiply by 3 (to remove the fraction) 2x+1=15Step 2: Subtract 1 from each side2x = 14Step 3: Divide by 2x = 7

When an equation contains two fractions, you need to multiply by the lowest common denominator. This will then remove both fractions.

Example 6 : Solve the equation $\frac{x+1}{4} + \frac{x+2}{5} = 2$	
Solution:	
Step 1: Find the lowest common denominator:	The smallest number that both 4 and 5 divide into is 20.
Step 2: Multiply both sides by the lowest common denominato	$\operatorname{pr}\frac{20(x+1)}{4} + \frac{20(x+2)}{5} = 40$
Step 3: Simplify the left hand side:	$\frac{\cancel{20}(x+1)}{\cancel{4}} + \frac{\cancel{20}(x+2)}{\cancel{5}} = 40$ 5(x+1) + 4(x+2) = 40
Step 4: Multiply out the brackets:	5x + 5 + 4x + 8 = 40
Step 5: Simplify the equation:	9 <i>x</i> + 13 = 40
Step 6: Subtract 13	9 <i>x</i> = 27
Step 7: Divide by 9:	<i>x</i> = 3

Example 7: Solve the equation
$$x + \frac{x-2}{4} = 2 - \frac{3-5x}{6}$$

Solution: The lowest number that 4 and 6 go into is 12. So we multiply every term by 12:
 $12x + \frac{12(x-2)}{4} = 24 - \frac{12(3-5x)}{6}$
Simplify $12x + 3(x-2) = 24 - 2(3-5x)$
Expand brackets $12x + 3x - 6 = 24 - 6 + 10x$
Simplify $15x - 6 = 18 + 10x$
Subtract $10x$ $5x - 6 = 18$
Add 6 $5x = 24$

Exercise C: Solve these equations

1)
$$\frac{1}{2}(x+3) = 5$$
 2) $\frac{2x}{3} - 1 = \frac{x}{3} + 4$

3)
$$\frac{y}{4} + 3 = 5 - \frac{y}{3}$$
 4) $\frac{x-2}{7} = 2 + \frac{3-x}{14}$

Exercise C (continued)

5)
$$\frac{7x-1}{2} = 13-x$$
 6) $\frac{y-1}{2} + \frac{y+1}{3} = \frac{2y+5}{6}$

7)
$$2x + \frac{x-1}{2} = \frac{5x+3}{3}$$
 8) $2 - \frac{5}{x} = \frac{10}{x} - 1$

FORMING EQUATIONS

Example 8 : Find three	Example 8 : Find three consecutive numbers so that their sum is 96.		
-			
Solution: Let the firs	t number be <i>n</i> , then the second is $n + 1$ and the third is $n + 2$.		
Therefore	(a + 1) + (a + 2) = 0		
Therefore	n + (n + 1) + (n + 2) = 96		
	3 <i>n</i> + 3 = 96		
	511 + 5 - 50		
	3 <i>n</i> = 93		
	511 - 55		
	n = 31		
So the numbers are 31, 32 and 33.			

Exercise D:

1) Find 3 consecutive even numbers so that their sum is 108.

2) The perimeter of a rectangle is 79 cm. One side is three times the length of the other. Form an equation and hence find the length of each side.

3) Two girls have 72 photographs of celebrities between them. One gives 11 to the other and finds that she now has half the number her friend has.

Form an equation, letting *n* be the number of photographs one girl had at the **beginning**.

Hence find how many each has **now**.

Chapter 3: SIMULTANEOUS EQUATIONS

3x + 2y = 8	0
5 <i>x</i> + <i>y</i> = 11	2
/e can solve thes n the equations.	e equations in order to find the
	the coefficients of y the same in both at both equations contain 2y:
= ③	
m equation \oplus . V	Ve get: 7 <i>x</i> = 14
	i.e. <i>x</i> = 2
equations. For ex	ample if we put it into ②:
ting both x and y	into the original equations.
	5x + y = 11 /e can solve thes in the equations. this by making to ion (2) by 2, so the = (3) m equation (1). We equations. For ex-

Solution: We begin by getting the same number of x or y appearing in both equation. We can get 20y in both equations if we multiply the top equation by 4 and the bottom equation by 5:

8x + 20y = 64 ③ 15x - 20y = 5 ④

3x - 4y = 1 ②

As the SIGNS in front of 20y are DIFFERENT, we can eliminate the y terms from the equations by ADDING:

	23 <i>x</i> = 69	3+4
i.e.	<i>x</i> = 3	
Substituting this int	o equation ① gives	:
	6 + 5 <i>y</i> = 16	
	5 <i>y</i> = 10	
So	<i>y</i> = 2	
The solution is $x = 3$	8, y = 2.	

Exercise:

Solve the pairs of simultaneous equations in the following questions:

1)x + 2y = 72)x + 3y = 03x + 2y = 93x + 2y = -7

3)3x - 2y = 44)9x - 2y = 252x + 3y = -64x - 5y = 7

5)	4a + 3b = 22	6)	3 <i>p</i> + 3 <i>q</i> = 15
	5a - 4b = 43		2 <i>p</i> + 5 <i>q</i> = 14

Chapter 4: FACTORISING

Common factors

We can factorise some expressions by taking out a common factor.

Example 1:	Factorise 12x – 30
Solution : outside	6 is a common factor to both 12 and 30. We can therefore factorise by taking 6 e a bracket:
	12x - 30 = 6(2x - 5)

Example 2:Factorise $6x^2 - 2xy$ Solution:2 is a common factor to both 6 and 2. Both terms also contain an x.So we factorise by taking 2x outside a bracket. $6x^2 - 2xy = 2x(3x - y)$

Example 3:	Factorise $9x^3y^2 - 18x^2y$
Solution:	9 is a common factor to both 9 and 18.
	The highest power of x that is present in both expressions is x^2 .
	There is also a y present in both parts.
	So we factorise by taking $9x^2y$ outside a bracket:
	$9x^3y^2 - 18x^2y = 9x^2y(xy - 2)$

Example 4:	Factorise $3x(2x-1) - 4(2x-1)$
Solution:	There is a common bracket as a factor.
	So we factorise by taking $(2x - 1)$ out as a factor.
	The expression factorises to $(2x - 1)(3x - 4)$

Exercise A

Factorise each of the following

- 1) 3*x* + *xy*
- 2) $4x^2 2xy$
- 3) $pq^2 p^2q$
- 4) 3*pq* 9*q*²
- 5) $2x^3 6x^2$
- 6) $8a^5b^2 12a^3b^4$
- 7) 5y(y-1) + 3(y-1)

Factorising quadratics

Simple quadratics: Factorising quadratics of the form $x^2 + bx + c$

The method is:

<u>Step 1</u>: Form two brackets $(x \dots)(x \dots)$

<u>Step 2</u>: Find two numbers that multiply to give *c* and add to make *b*. These two numbers get written at the other end of the brackets.

Example 1: Factorise $x^2 - 9x - 10$.

Solution: We need to find two numbers that multiply to make -10 and add to make -9. These numbers are -10 and 1.

Therefore $x^2 - 9x - 10 = (x - 10)(x + 1)$.

General quadratics: Factorising quadratics of the form $ax^2 + bx + c$

The method is:

<u>Step 1</u>: Find two numbers that multiply together to make *ac* and add to make *b*.

<u>Step 2</u>: Split up the *bx* term using the numbers found in step 1.

<u>Step 3</u>: Factorise the front and back pair of expressions as fully as possible.

<u>Step 4</u>: There should be a common bracket. Take this out as a common factor.

Example 2: Factorise $6x^2 + x - 12$.

Solution: We need to find two numbers that multiply to make $6 \times -12 = -72$ and add to make 1. These two numbers are -8 and 9.

Therefore, $6x^2 + x - 12 = 6x^2 - 8x + 9x - 12$

$$\checkmark$$
 \checkmark

= 2x(3x-4) + 3(3x-4)

(the two brackets must be identical)

= (3x - 4)(2x + 3)

Difference of two squares: Factorising quadratics of the form $x^2 - a^2$		
Remember that $x^2 - a$	$a^2 = (x+a)(x-a).$	
Therefore: $x^2 - 9$	$\theta = x^2 - 3^2 = (x+3)(x-3)$	
$16x^2$ -	$-25 = (2x)^2 - 5^2 = (2x + 5)(2x - 5)$	
Also notice that:	$2x^{2} - 8 = 2(x^{2} - 4) = 2(x + 4)(x - 4)$	
and	$3x^{3} - 48xy^{2} = 3x(x^{2} - 16y^{2}) = 3x(x + 4y)(x - 4y)$	

Factorising by pairing

We can factorise expressions like $2x^2 + xy - 2x - y$ using the method of factorising by pairing:

 $2x^{2} + xy - 2x - y = x(2x + y) - 1(2x + y)$ (fact

 (factorise front and back pairs, ensuring both brackets are identical)

$$= (2x + y)(x - 1)$$

Exercise B

Factorise

- 1) $x^2 x 6$
- 2) $x^2 + 6x 16$
- 3) $2x^2 + 5x + 2$
- 4) $2x^2 3x$ (factorise by taking out a common factor)
- 5) $3x^2 + 5x 2$

6) $2y^2 + 17y + 21$

- 7) $7y^2 10y + 3$
- 8) $10x^2 + 5x 30$
- 9) $4x^2 25$

- 10) $x^2 3x xy + 3y^2$
- 11) $4x^2 12x + 8$
- 12) $16m^2 81n^2$
- 13) $4y^3 9a^2y$
- 14) $8(x+1)^2 2(x+1) 10$

Chapter 5: CHANGING THE SUBJECT OF A FORMULA

We can use algebra to change the subject of a formula. Rearranging a formula is similar to solving an equation – we must do the same to both sides in order to keep the equation balanced.

Example 1:	Make <i>x</i> the subject	of the formula $y = 4x + 3$.
Solution:		y = 4x + 3
Subtract 3 fro	m both sides:	y-3=4x
Divide both si	des by 4;	$\frac{y-3}{4} = x$
So $x = \frac{y-3}{4}$	is the same equatior	but with <i>x</i> the subject.

Example 2:	Make <i>x</i> the subject	of <i>y</i> = 2 – 5 <i>x</i>	
Solution:	Notice that in this f	ormula the <i>x</i> term is negative.	
		y = 2 - 5x	
Add 5 <i>x</i> to bot	h sides	y + 5x = 2	(the <i>x</i> term is now positive)
Subtract y fro	m both sides	5x = 2 - y	
Divide both si	des by 5	$x = \frac{2 - y}{5}$	

Example 3:	The formula $C = \frac{5(F-32)}{9}$ is	s used to convert betwe	en ° Fahrenheit and ° Celsius.
We can rearra	nge to make <i>F</i> the subject.		
		$C = \frac{5(F-32)}{9}$	
Multiply by 9		9C = 5(F - 32)	(this removes the fraction)
Expand the bra	ackets	9C = 5F - 160	
Add 160 to bot	th sides	9C + 160 = 5F	

Divide both sides by 5	$\frac{9C+160}{5} = F$
Therefore the required rearrangement	t is $F = \frac{9C + 160}{5}$.

Exercise A

Make *x* the subject of each of these formulae:

1)
$$y = 7x - 1$$
 2) $y = \frac{x + 5}{4}$

3)
$$4y = \frac{x}{3} - 2$$
 4) $y = \frac{4(3x - 5)}{9}$

Rearranging equations involving squares and square roots

Example 4: Make *x* the subject of
$$x^2 + y^2 = w^2$$

Solution:
 $x^2 + y^2 = w^2$
Subtract y^2 from both sides:
 $x^2 = w^2 - y^2$ (this isolates the term involving *x*)
Square root both sides:
 $x = \pm \sqrt{w^2 - y^2}$

Remember that you can have a positive or a negative square root. We cannot simplify the answer any more.

Example 5 : Make <i>a</i> the subject of the formula	$t = \frac{1}{4}\sqrt{\frac{5a}{h}}$
Solution:	$t = \frac{1}{4}\sqrt{\frac{5a}{h}}$
Multiply by 4	$4t = \sqrt{\frac{5a}{h}}$
Square both sides	$16t^2 = \frac{5a}{h}$
Multiply by <i>h</i> :	$16t^2h = 5a$
Divide by 5:	$\frac{16t^2h}{5} = a$

Exercise B:

Make t the subject of each of the following

1)
$$P = \frac{wt}{32r}$$
 2) $P = \frac{wt^2}{32r}$

3)
$$V = \frac{1}{3}\pi t^2 h$$
 4) $P = \sqrt{\frac{2t}{g}}$

5)
$$Pa = \frac{w(v-t)}{g}$$
 6) $r = a + bt^2$

More difficult examples

Sometimes the variable that we wish to make the subject occurs in more than one place in the formula. In these questions, we collect the terms involving this variable on one side of the equation, and we put the other terms on the opposite side.

Example 6:	Make t the subject of the form	ula $a - xt = b + yt$
Solution:		a - xt = b + yt
Start by collect	ing all the t terms on the right h	and side:
Add <i>xt</i> to both	sides:	a = b + yt + xt
Now put the te	erms without a <i>t</i> on the left hand	side:
Subtract <i>b</i> fror	n both sides:	a-b = yt + xt
Factorise the F	RHS:	a-b=t(y+x)
Divide by (y +)	<i><</i>):	$\frac{a-b}{y+x} = t$
So the	required equation is	$t = \frac{a-b}{y+x}$

Example 7 : Make <i>W</i> the subject of the formula $T - W = \frac{Wa}{2b}$		
Solution: This formula is comp	icated by the fractional term. We begin by removing the fraction:	
Multiply by 2 <i>b</i> :	2bT - 2bW = Wa	
Add 2 <i>bW</i> to both sides:	2bT = Wa + 2bW (this collects the W's together)	
Factorise the RHS:	2bT = W(a+2b)	
Divide both sides by $a + 2b$:	$W = \frac{2bT}{a+2b}$	

Exercise C

Make *x* the subject of these formulae:

1)
$$ax + 3 = bx + c$$
 2) $3(x + a) = k(x - 2)$

3)
$$y = \frac{2x+3}{5x-2}$$
 4) $\frac{x}{a} = 1 + \frac{x}{b}$

Chapter 6: SOLVING QUADRATIC EQUATIONS

A quadratic equation has the form $ax^2 + bx + c = 0$.

There are two methods that are commonly used for solving quadratic equations:

- * factorising
- * the quadratic formula

Note that not all quadratic equations can be solved by factorising. The quadratic formula can always be used however.

Method 1: Factorising

Make sure that the equation is rearranged so that the right hand side is 0. It usually makes it easier if the coefficient of x^2 is positive.

Example 1 : Solve $x^2 - 3x + 2 = 0$

Factorise (x-1)(x-2) = 0

Either (x - 1) = 0 or (x - 2) = 0

So the solutions are x = 1 or x = 2

Note: The individual values x = 1 and x = 2 are called the **roots** of the equation.

Example 2: Solve $x^2 - 2x = 0$ Factorise: x(x - 2) = 0Either x = 0 or (x - 2) = 0So x = 0 or x = 2

Method 2: Using the formula

Recall that the roots of the quadratic equation $ax^2 + bx + c = 0$ are given by the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 3: Solve the equation $2x^2 - 5 = 7 - 3x$

Solution: First we rearrange so that the right hand side is 0. We get $2x^2 + 3x - 12 = 0$

We can then tell that a = 2, b = 3 and c = -12.

Substituting these into the quadratic formula gives:

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 2 \times (-12)}}{2 \times 2} = \frac{-3 \pm \sqrt{105}}{4}$$
 (this is the *surd form* for the solutions)

If we have a calculator, we can evaluate these roots to get: x = 1.81 or x = -3.31

EXERCISE

- 1) Use factorisation to solve the following equations:
- a) $x^2 + 3x + 2 = 0$ b) $x^2 3x 4 = 0$

c) $x^2 = 15 - 2x$

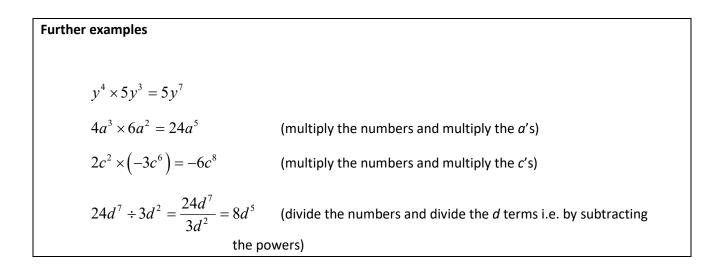
2) Find the roots of the following equations:

a) $x^2 + 3x = 0$ b)	$x^2 - 4x = 0$
----------------------	----------------

c) $4 - x^2 = 0$

- 3) Solve the following equations either by factorising or by using the formula:
- a) $6x^2 5x 4 = 0$ b) $8x^2 24x + 10 = 0$

4) Use the formula to solve the following equations to 3 significant figures. Some of the equations can't be solved.


a)	$x^2 + 7x + 9 = 0$	b)	$6 + 3x = 8x^2$
c)	$4x^2 - x - 7 = 0$	d)	$x^2 - 3x + 18 = 0$

e) $3x^2 + 4x + 4 = 0$	f)	$3x^2 = 13x - 16$
------------------------	----	-------------------

Chapter 7: INDICES

Basic rules of indices

y⁴ means $y \times y \times y \times y$. 4 is called the **index** (plural: indices), **power** or **exponent** of y. There are 3 basic rules of indices: 1) $a^m \times a^n = a^{m+n}$ e.g. $3^4 \times 3^5 = 3^9$ 2) $a^m \div a^n = a^{m-n}$ e.g. $3^8 \times 3^6 = 3^2$ 3) $(a^m)^n = a^{mn}$ e.g. $(3^2)^5 = 3^{10}$

Exercise A

Simplify the following:

- 1) $b \times 5b^5$ = (Remember that $b = b^1$)
- 2) $3c^2 \times 2c^5 =$

- $b^2 c \times b c^3 =$
- 4) $2n^6 \times (-6n^2) =$
- 5) $8n^8 \div 2n^3 =$
- $d^{11} \div d^9 =$
- 7) $(a^3)^2 =$ 8) $(-d^4)^3 =$

More complex powers

Zero index:	Zero index:				
Recall from GCSE that					
	$a^0 = 1$.				
This result is true f	or any non-zero number a.				
Therefore 5 [°]	$e^{0} = 1$ $\left(\frac{3}{4}\right)^{0} = 1$ $\left(-5.2304\right)^{0} = 1$				
Negative powers					
A power of -1 corresponds to the reciprocal of a number, i.e. $a^{-1} = \frac{1}{a}$					
Therefore 5 ⁻	$^{-1} = \frac{1}{5}$				
0.	$25^{-1} = \frac{1}{0.25} = 4$				
	$\left(\frac{4}{5}\right)^{-1} = \frac{5}{4}$ (you find the reciprocal of a fraction by swapping the top and				
	bottom over)				
This result can be extended to more general negative powers: $a^{-n} = \frac{1}{a^n}$.					
This means:					
3-	$x^2 = \frac{1}{3^2} = \frac{1}{9}$				
2-	$^{4} = \frac{1}{2^{4}} = \frac{1}{16}$				
	$\left(\frac{1}{4}\right)^{-2} = \left(\left(\frac{1}{4}\right)^{-1}\right)^2 = \left(\frac{4}{1}\right)^2 = 16$				

Fractional powers:

Fractional powers correspond to roots: $a^{1/2} = \sqrt{a}$ $a^{1/3} = \sqrt[3]{a}$ $a^{1/4} = \sqrt[4]{a}$ In general:

$$a^{1/n} = \sqrt[n]{a}$$

Therefore:

$$8^{1/3} = \sqrt[3]{8} = 2 \qquad 25^{1/2} = \sqrt{25} = 5 \qquad 10000^{1/4} = \sqrt[4]{10000} = 10$$

A more general fractional power can be dealt with in the following way: $a^{m/n} = (a^{1/n})^m$

So
$$4^{3/2} = (\sqrt{4})^3 = 2^3 = 8$$

 $\left(\frac{8}{27}\right)^{2/3} = \left(\left(\frac{8}{27}\right)^{1/3}\right)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$
 $\left(\frac{25}{36}\right)^{-3/2} = \left(\frac{36}{25}\right)^{3/2} = \left(\sqrt{\frac{36}{25}}\right)^3 = \left(\frac{6}{5}\right)^3 = \frac{216}{125}$

Exercise B:

Find the value of:

- **1)** 4^{1/2}
- **2)** $27^{1/3}$
- 3) $\left(\frac{1}{9}\right)^{1/2}$
- **4)** 5⁻²
- 5) 18°
- **6)** 7⁻¹
- **7)** $27^{2/3}$
- $8) \qquad \left(\frac{2}{3}\right)^{-2}$
- **9)** 8^{-2/3}
- 10) $(0.04)^{1/2}$
- **11)** $\left(\frac{8}{27}\right)^{2/3}$

12)
$$\left(\frac{1}{16}\right)^{-3/2}$$

Simplify each of the following:

- 13) $2a^{1/2} \times 3a^{5/2}$
- 14) $x^3 \times x^{-2}$
- **15)** $(x^2y^4)^{1/2}$

Practice Booklet Test

This is the test that Year 12 mathematicians sat last September. Your test will ask similar questions to this one.

You may NOT use a calculator
If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
1. Expand and simplify
(a) $(2x + 3)(2x - 1)$ (b) $(a + 3)^2$ (c) $4x(3x - 2) - x(2x + 5)$
2. Factorise
(a) $x^2 - 7x$ (b) $y^2 - 64$ (c) $2x^2 + 5x - 3$ (d) $6t^2 - 13t + 5$
3. Simplify
(a) $\frac{4x^3y}{8x^2y^3}$ (b) $\frac{3x + 2}{3} + \frac{4x - 1}{6}$
4. Solve the following equations
(a) $\frac{h - 1}{4} + \frac{3h}{5} = 4$ (b) $x^2 - 8x = 0$ (c) $p^2 + 4p = 12$
5. Write each of the following as single powers of x and / y

(a)
$$\frac{1}{x^4}$$
 (b) $(x^2y)^3$ (c) $\frac{x^5}{x^{-2}}$
6. Work out the values of the following, giving your answers as fractions
(a) 4^{-2} (b) 10^0 (c) $\left(\frac{8}{27}\right)^{\frac{1}{3}}$
7. Solve the simultaneous equations $3x - 5y = -11$
 $5x - 2y = -7$
8. Rearrange the following equations to make x the subject
(a) $v^2 = u^2 + 2ax(b) \quad V = \frac{1}{3}\pi x^2h$ (c) $y = \frac{x+2}{x+1}$

9. Solve $5x^2 - x - 1 = 0$ giving your solutions in surd form

SOLUTIONS TO THE EXERCISES

CHAPTER 1:

<u>Ex A</u>

1) 28x + 352) -15x + 213) -7a + 44) $6y + 3y^2$ 5) 2x - 46) 7x - 17) $x^2 + 5x + 6$ 8) $t^2 - 7t + 10$ 9) $6x^2 + xy - 12y^2$ 10) $4x^2 + 4x - 24$ 11) $4y^2 - 1$ 12) $12 + 17x - 5x^2$ Ex B1) $x^2 - 2x + 1$ 2) $9x^2 + 30x + 25$ 3) $49x^2 - 28x + 4$ 4) $x^2 - 4$ 5) $9x^2 - 1$ 6) $25y^2 - 9$

CHAPTER 2

CHAPTER 3

1) x = 1, y = 3 2) x = -3, y = 1 3) x = 0, y = -2 4) x = 3, y = 1 5) a = 7, b = -2 6) p = 11/3, q = 4/3

CHAPTER 4

<u>Ex A</u>

1) x(3 + y) 2) 2x(2x - y) 3) pq(q - p) 4) 3q(p - 3q) 5) $2x^2(x - 3)$ 6) $4a^3b^2(2a^2 - 3b^2)$ 7) (y - 1)(5y + 3)

<u>Ex B</u>

1) (x-3)(x+2) 2) (x+8)(x-2) 3) (2x+1)(x+2) 4) x(2x-3) 5) (3x-1)(x+2)6) (2y+3)(y+7) 7) (7y-3)(y-1) 8) 5(2x-3)(x+2) 9) (2x+5)(2x-5) 10) (x-3)(x-y)11) 4(x-2)(x-1) 12) (4m-9n)(4m+9n) 13) y(2y-3a)(2y+3a) 14) 2(4x+5)(x-4)

CHAPTER 5

<u>Ex A</u>

1)
$$x = \frac{y+1}{7}$$
 2) $x = 4y-5$ 3) $x = 3(4y+2)$ 4) $x = \frac{9y+20}{12}$

<u>Ex B</u>

1)
$$t = \frac{32rP}{w}$$
 2) $t = \pm \sqrt{\frac{32rP}{w}}$ 3) $t = \pm \sqrt{\frac{3V}{\pi h}}$ 4) $t = \frac{P^2g}{2}$ 5) $t = v - \frac{Pag}{w}$ 6) $t = \pm \sqrt{\frac{r-a}{b}}$

<u>Ex C</u>

1)
$$x = \frac{c-3}{a-b}$$
 2) $x = \frac{3a+2k}{k-3}$ 3) $x = \frac{2y+3}{5y-2}$ 4) $x = \frac{ab}{b-a}$

CHAPTER 6

 1) a) -1, -2
 b) -1, 4
 c) -5, 3
 2) a) 0, -3
 b) 0, 4
 c) 2, -2

 3) a) -1/2, 4/3
 b) 0.5, 2.5
 4) a) -5.30, -1.70
 b) 1.07, -0.699
 c) -1.20, 1.45

 d) no solutions
 e) no solutions
 f) no solutions

CHAPTER 7

Ex A

1) $5b^6$ 2) $6c^7$ 3) b^3c^4 4) $-12n^8$ 5) $4n^5$ 6) d^2 7) a^6 8) $-d^{12}$

Ex B

1) 2 2) 3 3) 1/3 4) 1/25 5) 1 6) 1/7 7) 9 8) 9/4 9) ¼ 10) 0.2 11) 4/9 12) 64 13) 6*a*³ 14) x 15) *xy*²

SOLUTIONS TO PRACTICE BOOKLET TEST

1) a) $4x^2 + 4x - 3$ b) $a^2 + 6a + 9$ c) $10x^2 - 13x$

2) a) x(x-7) b) (y+8)(y-8) c) (2x-1)(x+3) d) (3t-5)(2t-1)

3) a)
$$\frac{x}{2y^2}$$
 b) $\frac{10x+3}{6}$

4) a) h = 5 b) x = 0 or x = 8 c) p = -6 or p = 2

5) a)
$$x^{-4}$$
 b) $x^{6}y^{3}$ c) x^{7}

6) a)
$$\frac{1}{16}$$
 b) 1 c) $\frac{2}{3}$

7) x = 3, y = 4

8) a)
$$x = \frac{v^2 - u^2}{2a}$$
 b) $x = \sqrt{\frac{3V}{\pi h}}$ c) $x = \frac{2 - y}{y - 1}$

9)
$$x = \frac{1 \pm \sqrt{21}}{10}$$